Clinical and polysomnographic differences among the obstructive sleep apnea syndrome patients from different ages

Emília Leite de Barros, Carolina Cozzi Machado, Renato Prescinotto, Paula Lopes, Luciano Lobato Gregório, Priscila Bogar Rapoport, Fernanda Louise Martinho Haddad

ABSTRACT
Introduction: Obstructive Sleep Apnea Syndrome (OSAS) has cardiovascular and cognitive repercussions that differ according to age. The aim of the present study was to demonstrate clinical and polysomnographic differences among three different age groups of patients with OSAS. Methods: We studied 130 adult patients with OSAS. The study protocol consisted on questionnaires, a physical examination, and polysomnography. Patients were distributed into three age groups: below 35 years-old (Group A), 35 to 65 years-old (Group B), and above 65 years-old (Group C). Results: Group A had 22 (16.9%) patients, B had 92 (70.7%), and C had 16 (12.3%). Systemic arterial hypertension (p=0.01) and cardiopathy (p=0.02) were significantly more frequent in Group C, while smoking (p=0.04) was more frequent in Group A. There were no differences between groups on polysomnography measures or Epworth Sleepiness Scale scores. Upon physical examination, there were significantly more posterior soft palate (p=0.004) and a greater use of dental prosthesis in Group C (p=0.03), along with a greater number of hypertrophic palatine tonsils in Group A (p=0.01). Conclusion: Most OSAS patients were in the 35 to 65 years-old age range. Clinical findings show that the disease may have different aggravating factors depending on the patient’s age.

Keywords: sleep apnea, obstructive; snoring; physical examination; polysomnography; aged.

RESUMO
Introdução: A Síndrome da Apneia Obstrutiva do Sono (SAOS) apresenta repercussões cardiovasculares e cognitivas e tem sido relacionada ao envelhecimento. Desta forma, o objetivo deste estudo foi demonstrar as possíveis diferenças clínicas e polissonográficas entre as diferentes faixas etárias de pacientes com SAOS. Métodos: Foram inclusos 130 pacientes adultos com SAOS. O protocolo de avaliação consistiu em questionários, exame físico e polissonografia. Os pacientes foram distribuídos em três grupos: até 35 anos (Grupo A), 35 a 65 anos (Grupo B) e acima de 65 anos (Grupo C). Resultados: Vinte e dois (16,9%) pertenciam ao Grupo A, 92 (70,7%) ao B e 16 (12,3%) ao C. Dentre os achados clínicos que apresentaram diferença estatisticamente significante, a presença da hipertensão arterial sistêmica (p=0,01) e da cardiopatia (p=0,02) foi mais frequente no Grupo C, e o tabagismo (p=0,04) mais frequente no Grupo A. Os achados polissonográficos e a escala de sonolência de Epworth não apresentaram diferença significativa entre os grupos. Os achados significativos no exame físico foram maior frequência de palato mole posteriorizado (p=0,004) e uso de prótese dentária n Grupo C (p=0,03), e maior frequência de tonsilas palatinas hiperplásicas no Grupo A (p=0,01). Conclusão: A maior parte dos pacientes com SAOS se encontrou entre a faixa etária de 35 a 65 anos. Os achados clínicos mostram que a doença pode apresentar diferentes agravantes, dependendo da faixa etária acometida.

Descritores: apneia do sono tipo obstrutiva; ronco; exame físico; polissonografia; idoso.

INTRODUCTION
Obstructive Sleep Apnea Syndrome (OSAS) is characterized by recurrent episodes of a partial or total obstruction of the upper airway (UA) during sleep, it is usually associated with sleep fragmentation and decreased oxyhemoglobin saturation\(^1\). The prevalence of OSAS is of 2% in women and 4% in men\(^2\), but a recent epidemiological study of the adult population of São Paulo, in Brazil, showed a much higher prevalence of 32.9\%\(^3\). OSAS is clinically important because it has high morbidity due to its effects on cardiovascular and cognitive function\(^1\).

The physiopathology of OSAS is not fully understood, but it seems to be multifactorial, and functional and structural alterations of the pharynx seem to be involved\(^1\). The main clinical predictors of the disease are: cervical circum-
ference, body mass index (BMI), craniofacial profile, and anatomical changes in the UA.

Numerous studies have correlated clinical measures with the presence of OSAS. For example, Friedman et al. showed a relationship between the presence of OSAS and the Mallampati Modified Index (MMI), size of tonsils, and BMI. Additionally, Zonato et al. have demonstrated a relationship between both the presence and severity of OSAS and MMI, BMI, and anatomical abnormalities of the pharynx, whereas Mayer et al. have related imaging measures of the UA and age (along with BMI) to snore and apnea patients. They showed a higher prevalence of the UA narrowing in younger patients, which positively correlated with the apnea-hypopnea index (AHI).

Obesity and age, along with gender, are also the main risk factors for OSAS. Snoring, which is one of the most common clinical signs of sleep apnea, sharply increases with age and has been found to be more prevalent in men (45%) than women (30%) over 65 years-old. Moreover, several studies have associated the severity of OSAS with age.

The aim of this study was to demonstrate differences in clinical and polysomnographic measures among three age groups, in patients with OSAS.

METHODS

We randomly sampled 130 adult (older than 18 years-old) patients with OSAS, of both genders, from referrals to a sleep-disordered breathing (SDB) outpatient clinic in the Department of Otolaryngology at the Faculdade de Medicina do ABC from Hospital Estadual Mário Covas, Santo André, São Paulo, in Brazil, between April 2007 and August 2008. The Ethics Committee of the institution approved the project and all patients signed an informed consent form.

OSAS diagnosis was based on clinical and polysomnographic criteria proposed by the International Classification of Sleep Disorders, second edition (ICSD-2, 2005).

All patients were assessed with questionnaires and a physical examination of the UA and craniofacial features was performed, during their first visit to the clinic; at a later visit, they underwent polysomnography.

For the analysis, patients were distributed into three groups: below 35 years-old (Group A), 35 to 65 years-old (Group B), and above 65 years-old (Group C). We compared the groups in all clinical and polysomnographic measures.

Questionnaires

Patients were asked about the presence of associated diseases, such as systemic arterial hypertension, diabetes mellitus, cardiopathy, and others, as well as tobacco and alcohol consumption.

Patients who reported snoring almost every day or every day of the week were considered to have habitual snoring. Patients were assessed with the Epworth Sleepiness Scale and the one that scored higher than 9 were considered to have excessive daytime sleepiness.

UA and craniofacial physical examination

The physical examination of the UA was performed as recommended by Zonato et al. Specifically, we evaluated the nose, soft palate, uvula, tonsillar pillars, tongue, palatine tonsils, and MMI.

For the nasal cavity examination, obstructive septal deviations were noted. We considered obstructive deviations of grades II and III, defined as touching the inferior nasal concha (grade II) or the lateral wall (grade III).

The soft palate was considered thick when it co-occurred with edema; posterior when it leaned to the posterior oropharyngeal wall; and web, when the insertion of the posterior pillar in the uvula was lowered. The tonsillar pillars were considered medialized when the insertion of the posterior pillar in the tongue was toward the midline of the pharynx and obstructed at least 50% of it.

The tonsils were divided into four grades, with grade I referring to the tonsils that occupied up to 25% of the oropharyngeal space and grade IV to those that occupied more than 75%. Hypertrophic tonsils were considered as grades III and IV, i.e., employing more than 50% of the oropharyngeal space. The tongue was considered voluminous when demarked by teeth, which shows a disparity between oral cavity and tongue volume.

The MMI was performed according to Friedman et al., and patients were classified into one of four classes. Class I occurred when the entire oropharynx was seen, including the lower pole of the tonsil. Class IV occurred when only the hard palate and part of the soft palate could be seen, and the posterior oropharyngeal wall and the insertion of the uvula were not seen. Patients were class III or IV when the base of the tongue and oropharynx was disproportionate.

The craniofacial exam evaluated the facial profile, hard palate, and type of dental occlusion, as recommended by Zonato et al.

First, we positioned the patient sideways in the Frankfurt position. Then, we drew a virtual line perpendicular to the ground through the white and red edges of the inferior lip. A distance greater than 0.2 mm from the chin was considered as retrognathic. The hard palate was considered ogival when it was narrow and deep. The dental occlusion was assessed according to Angle, and patients were considered class I if they had a normal occlusion, class II if the lower arcade was retro-positioned as compared to the upper arcade, and class
III if the upper arcade was retro-positioned as compared to
the lower arcade. Patients who had some missing teeth or
who were edentulous could not be assessed and placed in the
dental prosthetic group.

Polysomnography
An all-night polysomnography was performed by trained
professionals using the “EMBLA” (EMBLA® S7000, EM-
BLA systems, Inc, Broomfield, CO, USA). The biological
variables were measured by electroencephalography (C3/ A2, C4/A1, O1/A2, O2/A1), bilateral electro-oculogra-
phy, submentonian and anterior tibial electromyography,
and electrocardiography (V2 modified). The oral and nasal
flows were measured through a thermistor and nasal can-
nula with pressure transducer, respectively. Thoracic and
abdominal movement were monitored by noncalibrated
inductance plethysmography, snoring was recorded us-
ing a microphone, oxyhemoglobin was measured by pulse
oxyimetry, and body position was monitored by a sensor.
Sleep staging followed the criteria of Rechtschaffen and
Kales11 and the arousal followed the ones from the Ameri-
can Sleep Disorders Association (ASDA)12. The staging of
respiratory events was performed according to the criteria
proposed by the American Academy of Sleep Medicine
(AASM)13.

The analyzed measures were AHI, minimal oxygen satu-
ration of oxyhemoglobin (SpO\textsubscript{2} min.), arousal index per hour of
sleep (AI), percentage of sleep stages [REM and non-REM
(NREM)], and sleep efficiency (SE).

Descriptive statistics were calculated for all of the afore-
mentioned measures. Specifically, the mean, range, and stan-
ard deviation were calculated for quantitative variables, and
proportions were calculated for categorical variables. Group
means and frequencies were compared using an analysis of
variance (ANOVA) for quantitative variables and Pearson’s
chi-square test for the categorical ones.

All tests were performed using SPSS 16.0 for Windows,
and the significance level was set to p\textless0.05.

RESULTS
Of the 130 patients, 77 were female and 53 were male, with
a mean age of 49.3 years-old. The mean BMI of the whole
sample was 29.2 kg/m2.

Group A had 22 (16.9%) patients, Group B had 92 (70.7%),
and Group C had 16 (12.3%).

We found no statistically significant differences between
the proportion of patients that were female versus male
(Table 1). There was a significantly higher frequency of
smoking in Group A (p=0.04), and systemic arterial hyper-
tension and cardiopathy in Group C (p=0.01 and p=0.02,
respectively), as it can be seen in Table 2. Table 3 shows the
polysomnography findings. There were no statistically sig-
nificant differences between groups on these measures. BMI
also was not statistically different (Table 1).

Regarding the UA and craniofacial evaluation, there
was a significantly higher frequency of posterior soft palate
(p=0.004) and dental prosthetics (p=0.03) in Group C, and
hypertrophic tonsils of grades III and IV (p=0.01) in Group
A (Table 4).

Table 1. Distribution of patients according to sex, as well as the body mass index and Epworth Sleepiness Scale scores for each age group.

<table>
<thead>
<tr>
<th>Clinical parameter</th>
<th>Group A n=22</th>
<th>Group B n=92</th>
<th>Group C n=16</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females*</td>
<td>6 (27%)</td>
<td>41 (45%)</td>
<td>9 (59%)</td>
<td>0.32</td>
</tr>
<tr>
<td>Males*</td>
<td>16 (73%)</td>
<td>51 (55%)</td>
<td>6 (35%)</td>
<td>0.32</td>
</tr>
<tr>
<td>BMI (kg/m2)***</td>
<td>27.6±5.18</td>
<td>29.4±5.62</td>
<td>30.0±5.55</td>
<td>0.93</td>
</tr>
<tr>
<td>ESS**</td>
<td>3.1±3.8</td>
<td>10.5±5.5</td>
<td>12.0±4.4</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Group A: ≤35 years; Group B: 35-65; Group C: >65 years. BMI: body mass index; ESS: Epworth Sleepiness Scale; p: statistical value. Pearson x2 test* and ANOVA**.

Table 2. Clinical features of patients with OSAS across three age groups (Groups A, B and C).

<table>
<thead>
<tr>
<th>Clinical feature</th>
<th>Group A n=22</th>
<th>Group B n=92</th>
<th>Group C n=16</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitual snoring</td>
<td>17 (77.3%)</td>
<td>85 (92.4%)</td>
<td>15 (93.8%)</td>
<td>0.91</td>
</tr>
<tr>
<td>Smoking</td>
<td>7 (31.8%)</td>
<td>17 (18.5%)</td>
<td>1 (5.9%)</td>
<td>0.04</td>
</tr>
<tr>
<td>Alcoholism</td>
<td>2 (9.1%)</td>
<td>3 (3.3%)</td>
<td>1 (5.9%)</td>
<td>0.3</td>
</tr>
</tbody>
</table>
| Systemic arterial hyperten-
| sion | 3 (13.6%) | 35 (38%) | 12 (75%) | 0.01 |
| DM | 0 | 9 (9.8%) | 2 (12.5%) | 0.27 |
| Cardiopathy | 0 | 4 (4.3%) | 3 (17.6%) | 0.02 |

Group A: ≤35 years; Group B: 35-65; Group C: >65 years; DM: Diabetes Mellitus; p: statistical value. Pearson x2 test.

Table 3. Polysomnographic findings across three age groups (Groups A, B and C).

<table>
<thead>
<tr>
<th>Polysomnography measure</th>
<th>Group A n=22</th>
<th>Group B n=92</th>
<th>Group C n=16</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHI (hours)</td>
<td>30.0±3.3</td>
<td>29.7±26.4</td>
<td>44.2±28.9</td>
<td>0.15</td>
</tr>
<tr>
<td>Sleep 1 (%)</td>
<td>6.1±3.7</td>
<td>6.3±5.9</td>
<td>9.6±8.4</td>
<td>0.07</td>
</tr>
<tr>
<td>Sleep 2 (%)</td>
<td>58.6±17.2</td>
<td>60.9±13.3</td>
<td>63.8±14.5</td>
<td>0.53</td>
</tr>
<tr>
<td>Sleep 3+4 (%)</td>
<td>15.9±10.3</td>
<td>16.7±9.3</td>
<td>9.7±8.4</td>
<td>0.26</td>
</tr>
<tr>
<td>REM (%)</td>
<td>16.9±6.2</td>
<td>15.8±7.3</td>
<td>15.3±9.2</td>
<td>0.81</td>
</tr>
<tr>
<td>SpO\textsubscript{2} min (%)</td>
<td>86.8±7.7</td>
<td>80.2±7.3</td>
<td>75.3±18.2</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Group A: ≤35 years; Group B: 35-65; Group C: >65. AHI: apnea and hypopnea per hour of sleep; REM (%): percentage of rapid eye movement sleep; SpO\textsubscript{2} min. (%): minimal oxygen saturation in pulse oximetry; p: statistical value; ANOVA.
The frequency of systemic arterial hypertension and cardiopathy was significantly greater in individuals older than 65 years-old. However, this is due to their increased incidence with age independent of OSAS. The following fact is important and should always be discussed with patients: Systemic arterial hypertension is twice as common in those who snore, even after excluding confounding factors, such as age and obesity.6

As for the anthropometric evaluation, all groups showed a high rate of obesity (i.e., the mean BMI was high in all groups). As was found here, obesity has consistently been reported to be a predictor of OSAS4,6.

No polysomnography measures were significantly different across groups, the explanation of which is highly speculative. Several studies have demonstrated that the incidence of OSAS increases with age, independent of weight gain.4,7 However, there is a consensus that age should also be a predictor of disease severity. In the present study, which included only patients diagnosed with OSA, there was no increase in severity with increasing age. Therefore, we can conclude that age is a factor in the development of OSAS physiopathology, but not in determining its severity, which leads us to question whether the disease is progressive. Future studies with larger patient samples will be able to clarify the effect of age on disease severity.

A difference in the patients’ anatomical profiles was seen as a result of specific anatomical changes. The most important difference, which was statistically significant, is in the size of the palatine tonsils. Patients younger than 35 years-old had a higher prevalence of hypertrofic tonsils (grade III and IV) compared to both older groups. Therefore, we conclude that the anatomical profile of patients with OSAS differs especially with respect to tonsil size (an important contributor to the physiopathology of the disease), varies with age, and should be evaluated in young subjects, which is consistent with previous studies.5

A posterior palate was significantly more common in adults over 65 years-old. This difference may be explained by changes in the muscle tone and collagen deposits, which happens as you get older.

The type of dental occlusion was also different among the groups. This difference was due to the large number of patients over the age of 65 years, who use dental prosthetics. Although it does not represent a real difference in the patient’s skeletal profile, this is an important factor for choosing the patient’s treatment, as edentulous individuals cannot receive oral mandibular-advancement devices.

In conclusion, OSAS was more prevalent in patients between 35 and 65 years of age, but there were some features that were specific to an age group, especially the youngest

<table>
<thead>
<tr>
<th>Anatomical change</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrognathia</td>
<td>6 (27.3%)</td>
<td>20 (21.7%)</td>
<td>4 (25%)</td>
<td>0.891</td>
</tr>
<tr>
<td>Soft palate web</td>
<td>16 (72.7%)</td>
<td>62 (67.4%)</td>
<td>13 (81%)</td>
<td>0.512</td>
</tr>
<tr>
<td>Posterior soft palate</td>
<td>1 (4.5%)</td>
<td>35 (38%)</td>
<td>8 (50%)</td>
<td>0.004</td>
</tr>
<tr>
<td>Thick soft palate</td>
<td>9 (40.9%)</td>
<td>39 (42.4%)</td>
<td>8 (50%)</td>
<td>0.830</td>
</tr>
<tr>
<td>Palatine tonsils grades III and IV</td>
<td>8 (36.4%)</td>
<td>7 (7.6%)</td>
<td>1 (6.2%)</td>
<td>0.01</td>
</tr>
<tr>
<td>MMI III and IV</td>
<td>15 (68.2%)</td>
<td>77 (83.7%)</td>
<td>15 (93.8%)</td>
<td>0.102</td>
</tr>
<tr>
<td>Occlusion Class II and III</td>
<td>9 (9.8%)</td>
<td>16 (17.4%)</td>
<td>1 (1.1%)</td>
<td>0.03</td>
</tr>
<tr>
<td>Dental prosthesis</td>
<td>2 (9.1%)</td>
<td>51 (55.4%)</td>
<td>12 (75%)</td>
<td></td>
</tr>
<tr>
<td>Tonsillar pillars gutters</td>
<td>12 (54.5%)</td>
<td>1 (1.1%)</td>
<td>7 (43.8%)</td>
<td>0.951</td>
</tr>
<tr>
<td>Voluminous tongue</td>
<td>12 (54.5%)</td>
<td>38 (41.3%)</td>
<td>5 (31.3%)</td>
<td>0.335</td>
</tr>
<tr>
<td>Thick uvula</td>
<td>9 (40.9%)</td>
<td>48 (52.2%)</td>
<td>6 (37.5%)</td>
<td>0.411</td>
</tr>
<tr>
<td>Long uvula</td>
<td>12 (54.5%)</td>
<td>32 (34.8%)</td>
<td>8 (50%)</td>
<td>0.161</td>
</tr>
<tr>
<td>Obstructive septal deviation</td>
<td>4 (18.2%)</td>
<td>34 (37%)</td>
<td>5 (31.3%)</td>
<td>0.240</td>
</tr>
</tbody>
</table>

Group A: ≤35 years; Group B: 35-65; Group C: >65 years. MMI: Modified Mallampati Index; p: statistical value; Pearson x² test.
(below 35 years-old) and oldest (over 65 years) groups. Further studies may help us gain a better understanding of the physiopathology of this disease, as well as the reason why the disease onsets in different stages of life.

REFERÊNCIAS

