Frailty and sleep disturbances in the elderly: possible connections and clinical implications

RESUMO
A síndrome de fragilidade resulta da diminuição das reservas fisiológicas e funcionais durante o processo de envelhecimento patológico, levando à vulnerabilidade a estímulos estressores, aumentando a morbidade e mortalidade. A maioria das pessoas idosas com mais de 85 anos são frágeis ou pré-frágeis. Os distúrbios do sono também são mais prevalentes em idosos e possíveis associações entre a síndrome de fragilidade e alterações do sono têm sido estudadas. Este artigo visa discutir as implicações futuras de sua investigação. As palavras-chave estão associadas com a síndrome de fragilidade e alterações do sono em idades avançadas.

Descritores: distúrbios do sono, envelhecimento, fragilidade, idosos, ritmo circadiano.

INTRODUCTION
Population aging happens for the first time in human history worldwide. In 2012, people older than 60 years achieved 810 million and global estimates expect 2 billion or approximately 20% of total population arriving at this age group in 2050(3).

Aging impacts in health care systems primarily because of frailty, which is a clinical condition related to decline in physiological and functional reserves during the life course(6). Table 1 depicts one of the proposed clinical criteria for frailty phenotype. Vulnerability results from this condition and minor stress can lead to worsening of chronic conditions, new acute events or even death. Among people older than 85 years, until 50% are frail(3).

Table 1. Frailty criteria based on phenotypes(6).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Weight loss: unintentional weight loss in the last year (> 4.5 kg or 5% of body weight)</td>
</tr>
<tr>
<td>2.</td>
<td>Exhaustion: fatigue symptoms (assessed by items 7 and 20 from the Center for Epidemiologic Studies Depression Scale - CES-D)</td>
</tr>
<tr>
<td>3.</td>
<td>Slowness: decreased gait speed in seconds (lowest 20%, by gender and BMI), assessed by hand dynamometer</td>
</tr>
<tr>
<td>4.</td>
<td>Decreased physical activity (in the previous 2 weeks): Kcals/week; lowest 20% males: < 383 Kcals/week; females: < 270 Kcals/week, assessed by physical activity questionnaire</td>
</tr>
</tbody>
</table>

Frailty diagnosis: >3 criteria; Intermediate state or prefrail: 1 or 2 criteria.

Study carried out at Sleep Medicine Division, Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, Brazil.

Corresponding author: Ronaldo Delmonte Piovezan. Sleep Medicine Division, Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, Brazil.
Rua Napoléon de Barros, nº 925, 2º andar. Vila Clementino, São Paulo - SP, Brazil. CEP: 04024-002. Phone/Fax: +55 (11) 98415-3364. E-mail: rdpiovezan@gmail.com

Received: October 15, 2013; Accepted: December 28, 2013.
Similarly, aging deteriorates sleep physiology\(^{3,4}\). Sleep complaints increase as age advances and circadian rhythm changes disturb aged persons\(^{5,7}\). Frequent and long nocturnal awakenings, increased number of naps and poor sleep quality may result of degenerative conditions, which affect regions of the circadian rhythm control, such as the suprachiasmatic nucleus\(^{8,9}\). Visual deterioration, depression, dementia, chronic pain, nocturia and environmental or social factors favor poor sleep quality and daytime sleepiness in advanced ages\(^{10,11}\).

Sleep disturbances are more frequent in older populations. About 50% of them have some difficulty sleeping\(^{12,10}\). The opposite is also prevalent and comorbidities contribute to sleep problems\(^{17}\). The relationship between chronic diseases and sleep disorders, either directly or indirectly, can progress in the form of a vicious cycle.

The perception of parallel long-term development for two conditions, such as frailty and sleep disorders, raises hypotheses about possible associations between them and intrinsic shared causal pathways that can lead to new therapeutic proposals for both problems. The current article aims to summarize published findings on sleep and frailty in older adults with focus on recent discoveries. Topics in geriatric sleep medicine, epidemiological findings and potential mechanisms underlying the connections between sleep disorders and frailty and possible future research considerations will be also discussed.

METHODS
A non-systematic scientific literature search in the National Library of Medicine’s MedLine database’s PubMed system was performed and limited to studies written in the English language. Keywords searched were: frailty AND sleep (sleep OR circadian rhythms) or frailty AND sleep disorders (insomnia OR sleep-disordered breathing OR obstructive sleep apnea OR restless legs syndrome OR periodic limb movement during sleep). After the qualitative review of the articles found from these key word parameters, we include the reference sections as sources for additional articles. Inclusion criteria to include studies designs for the final review were limited to randomized controlled trials, clinical trials, prospective cohort studies, case-control studies, cross-sectional studies and meta-analyses in human subjects. We exclude case reports, case series, general review articles and guideline publications of the selection criteria for formal rigorous review.

Sleep in the elderly
Sleep parameters change over the lifetime. Older age groups suffer more from circadian rhythm disruptions, sleep complaints and sleep disturbances. The amplitude of the sleep-wake cycle reduces through the aging process\(^{15,9}\). Older adults expose less to daytime light and secret lower nocturnal pineal melatonin levels, which influence the circadian function and result in decreased sleep quality and daytime sleepiness\(^{19}\).

Significant changes in sleep structure occur with aging. The total sleep time, the sleep efficiency and the amount and intensity of slow-wave sleep (SWS) reduce while the wake time after sleep onset increases in this population. Although aged persons have more difficulty to obtain adequate sleep, even at very advanced ages, good sleep quality benefits the health status\(^{20,21}\).

Timing for sleep also changes across lifespan. Circadian rhythmicity tends to phase advancement in the older population, which has more difficulties to adapt to rapid phase shifts work and jet lag\(^{22}\). Moreover, napping behavior is increasingly observed across advanced aged subjects\(^{23}\). The benefits of such habit for the promotion of daytime wakefulness and nighttime sleep quality are uncertain\(^{7}\). Therefore, aging favors sleep-wake maladaptation because of circadian rhythm changes. It remains elusive whether regular napping contributes to compensate this problem or results from excessive daytime sleepiness (EDS) in this population\(^{24}\).

Some primary sleep disorders, such as SDB, are more common in older age groups. Community-dwelling elderly individuals have a progressively higher SDB prevalence. A population-based study found an apnea/hypopnea index (AHI) \(\geq 10\) in 62% of elderly participants; an AHI \(\geq 20\), in 44%; and an AHI \(\geq 40\), in 24%\(^{15}\). A longitudinal study demonstrated that body mass index (BMI) has a positive correlation with AHI in older persons. Hormonal consequences of SDB may also develop in this age group\(^{16}\).

Severe obstructive sleep apnea (OSA) not treated with continuous positive airway pressure treatment (CPAP) possibly increases cardiovascular death risk in the elderly. The adequate long-term CPAP treatment can reduce this risk, but randomized controlled trials are needed to clarify this assumption\(^{28}\). However, the relevance of mild obstructive sleep apnea as a risk factor for comorbidities and death in the elderly is still controversial\(^{20-31}\). Recent studies, which demonstrate correlations between AHI and frailty clinical criteria, add data to elucidate the importance of SDB for the general health maintenance of this age group.

Insomnia is increasingly prevalent in older population, with prevalence that ranges from 30 to 60%. Frequent awakenings during the night, daytime sleepiness, frequent napping and fatigue are symptoms associated with insomnia that could increase the risk of falls. Some studies have suggested that insomnia is a possible independent risk factor for falls in the aged group. Otherwise, psychotropic drugs used for insomnia and other psychiatric comorbidities are also related to fall accidents and fractures\(^{32}\). Insomnia possibly correlates directly and indirectly with frailty by means of daytime somnolence, fatigue, decreased general activity and reduced functional capacity. Effective strategies to reduce the burden of disease associate with insomnia at this population group need more studies about efficacy\(^{33,34}\).

What correlates sleep to frailty in aging: evidence from observational studies
Increasing evidence favors possible associations between sleep problems and frailty in older persons. Some studies found associations between components of frailty and sleep-disordered breathing (SDB), insomnia, sleep fragmentation, decreased sleep efficiency, hypoxia during sleep and greater daytime sleep\(^{35-39}\). Others found high prevalence of frailty syndrome in the elderly

Frailty and sleep in the elderly

with low sleep quality, excessive daytime sleepiness, decreased sleep efficiency, prolonged sleep latency and SDB\(^\text{40,41}\).

A prospective large cohort study has concluded that poor subjective sleep quality, greater nighttime wake time, and nocturnal hypoapnea are risk factors for development of frailty and death among older men\(^\text{32}\).

Recently, a cross-sectional study evaluated the prevalence of some sleep problems in institutionalized elderly people with frailty. Institutionalization relates to degradation in parameters of sleep quality and poor sleep is referred by 70% of aged institutionalized residents\(^\text{49}\). Frailty phenotype was associated with worse sleep quality according to Pittsburgh Sleep Quality Index results. Frail older persons had higher sleep latency, daytime sleepiness and fatigue symptoms. Sleep fragmentation, assessed by actimetry, was also correlated with frailty status.

Pathophysiologic connections between frailty and sleep disorders

Sleep patterns influence diverse physiological functions. Beyond the role on central nervous system, sleep mediates a large range of metabolic activities through neuroendocrine interactions\(^\text{44}\). Mechanisms involved in the risk of frailty among older adults with sleep disturbances may be similar to those hypothesized to explain how sleep parameters might influence metabolism and body composition in advanced ages. Biochemical explanations related to reductions in testosterone levels, chronic inflammation, oxidative stress and unbalance in GH secretion are possible shared pathways between frailty and sleep disorders on their relationship with increased morbidity and mortality in the elderly\(^\text{45-47}\).

Sleep disturbances affects hypothalamus-pituitary-adrenal axis and hypothalamic-pituitary-gonadal axis functions\(^\text{48}\). Higher cortisol levels result from sleep curtailment and testosterone secretion impairs with sleep-wake cycle instability. Furthermore, anabolic hormone secretions decrease in SDB\(^\text{49-55}\).

Decreased levels of IGF-1 are present in frailty as well as in sleep deprivation\(^\text{56}\). Besides sleep loss is associated with muscle proteolysis, one of explanations for weight loss in frail individuals. The majority of GH secretion occurs during slow wave sleep, which is reduced in the elderly\(^\text{57}\).

On one hand, sleep relates directly to overall health perception and to chronic conditions in older adults. On the other hand, clinical and neuropsychiatric conditions further increase the risk of sleep disturbances. Obstructive sleep apnea, advanced sleep phase disorder, insomnia and daytime sleepiness are possible mediators of immunological pathways, which raises levels of inflammatory molecules related to frailty risk, such as interleukin-6 and C-reactive protein\(^\text{58-61}\).

Sedentary lifestyle is also a shared risk factor for frailty and changes in sleep pattern. As clinical criteria for frailty, fatigue associates with impaired physical and mental states and possibly links non-restorative sleep to the frail phenotype\(^\text{62,63}\).

Rest-activity rhythm instability generates from less exposure to light and social activities\(^\text{64}\). Visual deterioration also compromises the circadian cycle in this population\(^\text{65}\). As these factors further reduce physical activity and total energy expenditure, sleep-wake cycle alterations are also possible risk factors for frailty in advancing age.

Sleep disturbances as risk factors for frailty in the elderly: clinical implications

Patients and their families will increasingly suffer with the burden of disease associated with the aging population. Among the most prevalent conditions in this age range, frailty and sleep disorders have major impact in the quality of life, functional capacity and mortality risk.

Clinical trials regarding interventions in sleep disorders and with frailty variables as a target are missing. Approaches proven effectiveness in frail elderly people include comprehensive geriatric assessment and focus on exercises. Nutritional interventions are promising strategies, but data is still inconclusive\(^\text{66-68}\).

However, no pharmacological therapy has been effective and hormonal replacement lacks long-term gains in functional capacity and carries-out safety concerns\(^\text{69,70}\).

Hence, interventions over sleep disturbances and circadian rhythm disruptions in the elderly possibly influence frailty parameters over time. Future studies testing therapeutic approaches such as continuous positive airway pressure for OSA, bright light therapy or validated strategies for insomnia could be performed with regards to evaluate frailty parameter as primary outcomes.

CONCLUSION

Recently, a few number of observational studies emerged favoring clinical associations between sleep disturbances and frailty in the elderly. Although pathophysiological explanations suggest a bidirectional correlation for these 2 entities, sleep alterations as risk factors for frailty has clear practical appealing. Chronic partial sleep deprivation is an increasing concern in our society and the reduced total sleep time and progressively growing prevalence of sleep disorders through adult age can potentially explain future health deterioration in older populations\(^\text{10}\).

Preventive measures are the best strategies to deal with health questions in aging. Frailty is a complex syndrome, with complicated multi-systemic pathologic pathways and scarce therapeutic proposals. Therefore, clinical trials addressing the assumption of sleep disturbances management or prevention may predict the course of frailty parameters and offer a novel approach to handle with clinical deterioration in aging.

REFERENCES

Frailty and sleep in the elderly

64. Murphy PJ, Campbell SS. Enhanced performance in elderly subjects following bright light treatment of sleep maintenance insomnia. Sleep Res. 1996;5(3):165-72. DOI: http://dx.doi.org/10.1016/j.slen.2013.06.001.x

