Brazilian consensus on sleep physiotherapy

Consenso brasileiro de fisioterapia do sono

Susana Cristina Lerosa Telles1,2, Luciana Badke Neves de Paiva1, Talita Arrais4, Ingrid Hashimoto Tateu Marzola1, Claudia Santana Zerbino1, Eduardo Cassoli Ferraz5, Cintia Arruda3, Denis Mesquita3, Fabiano Moreno5, Alessandra Seixinho1, Jairo Fiorato Junior1, Lara Freitas Assumpção3, Cecília Tadeu1, Sergio Tuﬁk4, Aline Marques Franco7, Daniela Morales7, Alan Luiz Eckeli7, Octávio Marques Pontes-Neto7, Amélia Pasqul Marques7, Ana Assumpção7, Alida Kellermann Borba8,9,10, Lia Rita Azeredo Bittencourt11

Study carried out at Presidente da Comissão de Fisioterapia da Associação Brasileira de Sono.1

ABSTRACT
The Brazilian physiotherapists are working in Sleep field in Brazil, both in clinical practice and research. There are only a few professionals in light of the huge demand of sleep disorder’s patients. This text aims to gather evidence and propose protocols to produce guidelines of clinical practice in the performance of physiotherapists in Brazil. It addresses Obstructive Sleep Apnea Syndrome, Neuromuscular Disorders, Restless Legs Syndrome, Periodic Leg Movements, Fibromyalgia and Sleep Bruxism.

Keywords: fibromyalgia, neuromuscular diseases, nocturnal myoclonus syndrome, obstructive, physical therapy specialty, sleep apnea.

INTRODUCTION
Physiotherapists already work on sleep disturbances field in Brazil, mainly focus on CPAP adherence. However, the professional does not find the proper clinical orientations to guide his practice. This text aims to propose guidelines for physiotherapy in sleep disorders based on scientific evidences. This work is the result of the first partnership between several reference centers, universities, physiotherapists and other sleep disorders in Brazil, organized by the Physiotherapy Commission of the Brazilian Sleep Association.

The text is divided in sections regarding physiotherapist’s performance in sleep disorder’s afflicted patients such as: respiratory, neurological, fibromyalgia and bruxism during sleep. For each case, there is a brief summary and discussion on how the physiotherapist can help.

Respiratory: Physiotherapy role on the obstructive sleep apnea syndrome (OSAS)
Authors: Luciana Badke Neves de Paiva; Talita Arrais; Sergio Tuﬁk; Lia Rita Azeredo Bittencourt
Definition:
The Obstructive Sleep Apnea Syndrome (OSAS) is characterized by recurrent events of obstruction of the upper airway (SAT) during sleep, involving respiratory-effort related arousals (RERA), limitation, reduction (hypopnea) or complete air flow cessation (apnea) while respiratory movements persist. In general, ventilation interruption results in oxyhemoglobin desaturation and hypercapnia in prolonged events. Often those events are ended by microarousals that fragment sleep\(^1(2)\).

Epidemiology:
Epidemiological studies have reported OSAS prevalence in adults from 2 to 7.5%, considering the presence of excessive diurnal sleepiness and apnea and hypopnea indexes (AHI) above 5\(^3(7)\).

A recent epidemiological study conducted in the city of São Paulo reported 32.9%, OSAS prevalence according to the International Classification of Sleep Disorders as diagnostic criteria\(^2(8)\).

Physiopathology:
Several theories have been proposed to explain OSAS physiopathology. OSAS patients present pharyngeal airway reduced in size and altered in shape, going from latero-lateral elliptical shape to a more prone to collapse shape\(^5\).

It is believed that the intra-thoracic negative pressure, generated by the respiratory effort, stimulates mechanoreceptors at the thoracic wall and in the SAT, leading to awakening and reopening the SAT, followed by sleep. This cycle repeats itself several times during the night and may be associated with the desaturation of oxyhemoglobin\(^7\).

OSAS predisposing factors are: obesity, mainly at the upper part of the body; lack of physical activity; male gender; age between 40 and 65 years; endocrinologic disorders such as hypothyroidism and acromegaly; craniofacial anomaly and family history\(^5(10)\).

The main consequences of abnormal respiration during sleep include excessive daytime sleepiness, neurobehavioral dysfunctions, cardiovascular, metabolic and mood disorders and quality of life alterations\(^2\).

Diagnostic and classification of the Severity of OSAS:
OSAS is a syndrome characterized by signs, symptoms, and associated risk factors. Therefore, the diagnostic needs a proper follow up based on history and physical anamnesis, associated to complementary exams\(^11\). Polysomnography (PSG) is considered the “gold standard” diagnostic method for sleep disorders\(^12(13)\).

According to the American Academy of Sleep Medicine’s task force report\(^5\), the severity criteria of OSAS must be based in two distinctive components: severity of excessive sleepiness and the number of obstructive respiratory events, evaluated by a PSG. The severity level must be specified according with both components and must be based on the most severe of the components. The OSAS severity is then classified as follows:

- **Mild OSAS:** involuntary and unwanted sleep episodes occurring during activities that require little attention. The symptoms lead to a small social and occupational hazard. Presence of 5 to 15 obstructive episodes per hour of sleep.
- **Moderate OSAS:** involuntary and unwanted sleep episodes occurring during activities that require some attention. The symptoms lead to a moderate social and occupational hazard. Presence of 15 to 30 obstructive episodes per hour of sleep.
- **Severe OSAS:** involuntary and unwanted sleep episodes occurring during activities that require a lot of attention. The symptoms lead to a severe social and occupational hazard. Presence of more than 30 obstructive episodes per hour of sleep.

OSAS treatment:
OSAS therapy is performed according to symptoms and its co-morbidities severity, as well as PSG alterations. Sleep hygiene and behavioral measures such as weight loss, physical activity, drug withdrawal (benzodiazepines, barbiturates and narcotics), alcohol avoidance at night and change of position during sleep (avoiding dorsal decubitus), must be always enforced\(^10\).

Positive Air Pressure (PAP) treatment

Basic Concepts
Several types of positive air pressure (PAP) equipments are commercially available: CPAP (“Continuous Positive Air Pressure”), BiPAP (“Bi-level Positive Airway Pressure”), automatic positive air pressure equipment and central apnea equipment (servoventilator).

The CPAP is considered the therapy of choice for the treatment of OSAS, especially in moderate and severe cases. However, in clinical practice, PAP may be used as well for mild apnea cases, resistance of the superior airway syndrome and snoring\(^9\).

CPAP is an equipment that generates and directs a continuous air flow by way of a flexible tube leading to a firmly attached mask over the patients face (nasal or facial), where the expiratory resistance is determined by the mask fenestration\(^11\). The PAP is transmitted to the SAT, creating a pneumatic spin that projects the soft palate anteriorly (over the tongue’s base) leading to expansion and opening of the entire superior air tract.

The benefits of PAP’s use are immediate and result in the termination of apneas, hypopneas and snoring, nocturnal increase in oxihemoglobin saturation and decrease of awakenings related to respiratory events.

Physiotherapist Role in the Sleep Laboratory: practice in Brazil

The physiotherapist may work in night shift performing the polysomnography test or in diurnal shift performing the exam first interpretation that must be revised by a medical doctor specialized in sleep disorders.

The basal sleep study is performed to detect the most common sleep disturbances in the night shift. If the patient is diagnosed with OSAS and the use of PAP equipment is

\[^{15}\text{Sleep Sci. 2013;6(4):159-174}\]
indicated, he or she is directed to the sleep laboratory for a PSG to adjust the correct PAP pressure level (titration).

When the patient arrives at the laboratory and has never had any contact with CPAP, there are several approaches to explain and patient adaptation to the equipment:

Suggestion of a protocol:

1. Patient is informed about:
 a. What is PAP;
 b. Its mechanism;
 c. The type of sensation he or she will feel when the equipment is turned on;
 d. Keep a peaceful and nasal respiration.
2. At this moment, the best mask option is determined for:
 a. Type: the first type of option is always the nasal, but when the patient has any difficulty breathing through its nose and having the need for an oral respiration, the facial mask is then selected;
 b. Size.
3. Finally, the equipment is connected on the patient for about 20 minutes programmed in a minimum pressure of 4 cm of water for adaptation.

During titration, it must be noticed the variable sleep efficiency in order to evaluate the patient’s comfort with the equipment, as well as the hypnogram visualization which illustrates the sleep stages distribution. REM (Rapid Eyes Movement) rebound sleep and/or sleep with slow waves is an important factor because obstructive events deprive the patient of these stages. The AHI is another important factor that must be observed during the test, informing the professional as to what type of CPAP and mask are more adequate for that particular patient.

Home Continuous Use of CPAP: physiotherapist role in the process of adaptation.

Scientific Evidences

The regular use of this equipment in severe patients decreases the complaint of excessive daytime sleepiness (EDS) and other symptoms associated with OSAS. However, CPAP and BiPAP are only therapeutically effective when regularly used. The regularity of the pattern of CPAP use during the first days predicts its use in the long term. Studies have shown that the patients that are educated in more detail by the physiotherapist should use this opportunity to explain PAP use in general and to stimulate adhesion showing the benefits of the long term treatment.

Practice in Brazil:

After the PSG to adjust the PAP and the medical prescription for the equipment, the continuous education program starts.

Suggestion of a Protocol to be performed by the physiotherapist:

According to the American Academy of Sleep Medicine’s task force report:

I. First consultation:
 a. Investigate:
 • Sleep Habits (agitated, insomnia e daily habits);
 • If the patient breathes well through the nose; if does or did any ENT (Ear, Nose and Throat) treatment; or if has undergone any nose, tonsils or snoring surgery;
 • Cognition Alterations (Slow thinking, forgetfulness);
 • Mood Disorders (irritability, depression and anxiety);
 • History of smoking and alcohol addiction;
 • Ongoing physical activity and diet regimen;
 • Other health problems.
 b. Explain the disease, risk factors, types of available treatments for each instance, what to look for and consequences of the lack of treatment;
 c. Elucidate the importance of weight loss and sleep hygiene (sleep positioning, alcohol addiction, medications and benefits of a physical activity program, etc.).
 d. Mask adaptation and the CPAP equipment.

II. First, third and sixth month of CPAP use:
 a. Evaluate the treatment adherence;
 b. Investigate possible causes of mask and equipment intolerance.

III. After this period, the patient may return every 6 months in order to verify treatment adherence and possible causes of treatment intolerance.

Recent studies evaluating OSAS patients using CPAP suggest that non-adherence is an important problem. There is no consensus on CPAP adherence definition. A use of 4 h/night in 70% of all nights was established as a clinical reference of treatment adherence to CPAP.

The physiotherapist must investigate the possible causes of intolerance to CPAP, such as severe nasal obstructions that may impair the PAP utilization, dryness of the ocular mucosa during CPAP, headache when awakening, insomnia with OSAS, mask intolerance, skin lesions, poor hygiene when using the CPAP masks, equipment noises, humidifier application, among others.

Several types of positive pressure equipments are available, which can also come with humidifiers, pressure graduation system (ramp), apnea and hypopnea detection system, mask leakage detection system and usage monitors. The physiotherapist must know how to adjust every parameter according to the patient’s needs.

Moreover, there are different types of masks: nasal, intranasal and facial. The nasal mask is more commonly used. The intranasal and facial masks are used in cases of nasal mask intolerance. However, intranasal mask is not indicated for pressures above 12 cm H₂O. The facial mask is indicated for patients that can’t keep their mouth closed during sleep, even when using the nasal mask.
The BiPAP is an optional therapy indicated in cases where higher pressures are necessary, when the patient presents difficulty in exhale the air against a fixed pressure, presence of central hypventilation, treatment of restrictive pulmonary diseases or syndromes of hypventilation associated with diurnal hypercapnia.(10)

The adaptive servoventilation is a method of ventilation that can be adjusted in a standard configuration or with a variable inspiratory and expiratory pressure (to secure the patency of the SAT). The ventilator adjusts itself with the Cheyne-Stokes respiration, characteristic of the central apnea, giving dynamic respiratory adjust (respiration per respiration), promoting hyperventilation and hypocapnia.(20)

It is important that the physiotherapist working in this area also educates the patient about the continuous care of use and maintenance of the positive pressure equipment in the long term, as well as about the disease and the benefits of the treatment.

Rehabilitation program:

Scientific Evidences:
Although the results of some studies demonstrated the benefits of the regular physical exercise as an adjunctive treatment for OSAS, there are few studies in the area. According to Hong &Dimsdale(21) (2003) the consequences of OSAS, such as diurnal somnolence and fatigue, may be the main reason for the limitation of physical exercise in this population.

Physical exercises in a regular fashion are indicated to aid in weight loss, increase SAT’s muscular tonicity and also contribute to decrease the inflammatory response in OSAS individuals. However, the type, intensity and duration of the exercises are not established.(22)

Shneerson & Wright(22) (2001), in a review, recommend regular physical exercise not only for weight loss, but also to modify the sleep structure. Some studies have shown improvement in subjective sleepiness, quality of life, mood, cognition and in decreasing of the respiratory disorder indexes (AHI + RERA)(23,24). In another study, Sengul et al.(26) (2009) have shown an improvement in AHI, quality of life and sleep architecture after an aerobic physical and breathing exercise in patients with OSAS. Recently, Ackel-D’Elia et al.(27) (2011) have shown that an aerobic physical program during 2 months (3 times a week, with an average duration of 1 hour and intensity of 85% of maximum VO₂ measured by cardiopulmonary tests), associated with CPAP in patients with OSAS, were more efficient in decreasing stress, fatigue and sleepiness’s levels, presenting more positive effects on physical fitness and general health perception, when compared to patients using only CPAP.

Barnes et al.(28) (2009) have associated aerobic exercise (3 times a week), strength training (5 times a week from the fifth to the sixteenth week) and low caloric diet during 4 months in 12 individuals with mild to severe OSAS. The power of the strength exercises was measured in 80% of the 1 repetition max (RM) test, consisting of 3 series of 8 to 12 repetitions. The aerobic exercises were performed in a combination of hiking, walking and light jogging during 40 minutes in an intensity of 80% of the VO₂ peak on the maximum effort test in the treadmill. The results showed a significant reduction of the body mass index (BMI), abdominal and cervical circumference. However there were no significant changes on OSAS severity.

Therefore, there is no consensus concerning the benefits upon the sleep of apneic patients who underwent the rehabilitation program(29). On the other side, the efficacy of the early physical exercises is undeniable, once they prevent the progression of the disease and decreases morbidity and mortality within that population(30).

Practice in Brazil:
The physiotherapist’s job is to plan the rehabilitation program for the patient. This program must be based on anamnesis formed by clinical history, muscular strength test, range of motion measures, kinesitherapy evaluation of the respiratory system and cardiovascular evaluation by ergometric test or previous cardiopulmonary evaluation, with proper medical follow up. Based on the multi-systemic repercussion of OSAS, the assessment of sleep habits must be considered as fundamental within the context of rehabilitation and must be included as an important part of the clinical history of each patient when consulting for physiotherapy(31).

The rehabilitation program for apneic patients has excellent cost/benefit ratio, being one of the most accessible modalities for the majority of these patients(27,30). The physiotherapist may use the proper low cost tools and provide sessions in public areas or at home, a very common practice in other physiotherapist clinical interventions in Brazil. There are benefits not only for the apneic patients, but and as well for patients with disabilities or already suffering from other and more severe pathologies. Sleep hygiene may be covered by a sleeping diary where the patient states: sleeping time, awakening time, number of times that they got up during the night. By analyzing this diary, the difficulties in CPAP adaptation are more easily revealed. The physiotherapist should be able to differentiate every patient’s difficulties and integrate these interventions within the rehabilitation program of the apneic patient.

Neurological

Neuromuscular disorders and sleep
Authors: Ingrid Hashimoto Tadeu Marzola; Claudia Santana Zerbinatti; Eduardo Cassoli Ferraz; Cintia Arruda; Denis Mesquita; Fabiano Moreno; Alessandra Seixinho; Jairo Fiorato Junior; Lara Freitas Assumpção; Cecília Tadei; Sergio Tufik

Definition
Neuromuscular disorders involve a vast group of pathologies of genetic or acquired origin whose symptoms may appear from the neonatal period until middle age. Usually they are classified according to the specific compromised neuromuscular structure(32).

- Muscular Fiber: myopathies
 - Congenital Muscular Dystrophy (Several subtypes)
 - Progressive Muscular Dystrophy: Duchenne, Becker, Waist, Uremo-scapular Face, Steinert Myotonic Dystrophy
- Myopathies: congenital and metabolic (several subtypes)
- Myositis of different types, mainly polymyositis
- Motor Neuron:
 - Spinal Amyotrophia (types I, II, III)
 - Poliomyelitis and sequel of Poliomyelitis (Post-Poliomyelitis Syndrome)
- Amyotrophic Lateral Sclerosis(ALS)
- Progressive Bulbar Paralysis
- Primary Lateral Sclerosis
- Roots and peripheral nerves:
 - Sensitive-motor Hereditary Polyneuropathies: Charcot-Marie-Tooth type I and Déjerine- Sottas (type III)
 - Guillain-Barré Syndrome
 - Myoneural Junction:
 - Congenital Myasthenic Syndrome
 - Myasthenia gravis
 - Botulism

Generally, the neuromuscular diseases compromise the skeletal muscles, marked by progressive and generalized loss of muscle strength, besides the bulbar and respiratory involvement in some of these pathologies. Pulmonary complications and respiratory failure are the main cause of death in this population(32).

Epidemiology

In children, the most prevalent forms of neuromuscular diseases are the Muscular Dystrophies, highlighted by Duchenne Muscular Dystrophy (DMD). It is an X-linked hereditary disease affecting 1 of 3,500 boys born alive. The Spinal Amyotrophia (SA) is subdivided in 3 groups, being the SA type I the most severe and frequent, appearing in 1 of every 20,000 newborns(33).

Among adults, the most aggressive and devastating disease is the Amyotrophic Lateral Sclerosis (ALS). Of unknown etiology, it affects both genders around the fourth of fifth decades of life, in a proportion of one or two cases for 100,000 individuals. The disease is characterized by progressive degeneration of the motor neurons and may show a bulbar beginning with dysarthria, dysphonia and dysphagia or in appendicular form, causing muscular weakness of the superior and inferior limbs. Regardless of its origin, the patients progress with muscular atrophy, general weakness and severe respiratory problems, keeping intact, however, their cognition and sensitivity(34).

Among the motor and sensitivity neuropathies, the disease type Charcot-Marie-Tooth, shows a prevalence of 1 to 100,000 and can affect both genders, especially between the first and second decades of life. The symptoms are linked to the demyelization process and the speed reduction of nervous impulse transmission, which results in both, sensitivity and motor dysfunction(35).

Another disorder is the Myasthenia Gravis, which appears in 200 to 400 individuals of every 1,000,000 people. It is an autoimmune neuromuscular disease leading to fluctuating muscle weakness and fatigue. Muscle weakness is caused by circulating antibodies that block acetylcholine receptors at the postsynaptic neuromuscular junction(36).

Physiopathology

As a result of inspiratory, expiratory and bulbar muscles impairment, associated to physical deformities, there appear respiratory complications, most of them, not perceived during rest and only detectable at a very detailed clinical evaluation, but that can be rapidly aggravated. Among these, there are(37,38):

- Reduction of volume and pulmonary capacity
- Micro-atelectasis
- Nocturnal Hypoventilation
- Diurnal Hypoventilation
- Defective Cough (peak of cough flow < 270 l/min) and difficulty in eliminating pulmonary secretion
- Dysphagia and frequent swallowing difficulties
- Recurrent respiratory infections
- Ventilatory Failure and Death

Sleep-related respiratory disturbances in neuromuscular disorders are also frequent, having prevalence 10 times higher than in the general population, which contributes to elevate the morbidity and mortality indexes(38). They are subdivided in 2 main groups:

- Nocturnal Hypoventilation: other than the sleep-related physiological effects, the respiratory muscle weakness increases during this period, developing frequent hypoxemia episodes (SpO2 < 88% for more than 5 minutes of the total time of sleep) and hypercapnia (P\textsubscript{ET}CO\textsubscript{2} > 50 mmHg for a period > 25% of the total time of sleep). This occurs initially during the REM sleep and may progress to other sleep phases, as well as compromising the alertness state in more advanced stages of the disease(39,40).
 Symptomatology related to hypventilation includes: fatigue, dyspnea, morning headache, frequent awakenings, suffocation episodes, excessive diurnal sleepiness, mood alterations. Other signs and symptoms are: notorious weight loss, recurrent respiratory infections, inability to control superior airways, reduced concentration and memory capacity, intellectual loss, libido reduction and growth deficiency(41,42).

- Syndrome of Obstructive Apnea of the Sleep (OSAS): characterized by the presence of recurrent snoring episodes associated with nightmares of the suffocating type, agitated and fragmented nocturnal sleep, diurnal somnolence, morning headaches, fatigue, concentration difficulty and irritability. Besides respiratory and pharynx’s muscles weaknesses, there are other risk factors such as: superior air tract deformities, obesity, craniofacial and anatomical alterations (adenotonsillar hypertrophy, retrognathism, macroglossia) and ventilator control abnormalities(41,42).

Sleep Sci. 2013;6(4):159-174
Role of the Physiotherapist

Scientific Evidences

According to the Consensus of the American Thoracic Society (2004), patients afflicted by neuromuscular disorders must undertake respiratory evaluation, at least, 2 times per year after losing walking capacity, presenting forced vital capacity of > 80% or being 12 years old or more.\(^{(33)}\)

The clinical evaluation should include:

- Pulmonary Functional Tests: forced vital capacity (FVC), forced expiratory volume at 1st Second (VEF1), expiratory flow peak. The test must be performed in a sitting and supine position to evaluate possible diaphragmatic impairment (loss of CVF value > 40%)\(^{(34)}\).
- Measurement of maximum respiratory pressures: Maximum Inspiratory Pressure (Pimax), Respiratory Pressure (Pemax), Inspiratory Nasal Pressure (Sniff test)
- Measurement of cough flow peak
- Analysis of blood gases: non-invasive parameters of \(\text{SpO}_2\) such as pulse oximetry and measurement of final exhaled \(\text{CO}_2 (P_{\text{ET} CO_2})\) or arterial gasometry
- Sleep pattern study through polysomnography and/or nocturnal oxymetry
- Presence of signs and symptoms indicating hypoventilation\(^{(35,41,42)}\).

Indications for the beginning of treatment with VMNI:

- Nocturnal VMNI: must be introduced during sleep respiratory disturbances such as OSAS (apnea index ≥ 5 and associated symptomatology), hypoventilation and clinical complaints already described. The process of adaptation to VMNI may occur electively during the sleep study, at ambulatory or home consultation or in emergency situations, during hospitalization for respiratory complications\(^{(43,44)}\). Equipment with two pressure levels may be used, or a conventional per volume ventilator, as well as several models of interfacing according to the respiratory pattern or patient adaptation (nasal, facial or intranasal mask).
- Diurnal VMNI: due to the progressive characteristic of the neuromuscular diseases, the hypo-ventilatory state may be aggravated even during incisive nocturnal ventilator support and progress to dyspnea, hypoxemia and diurnal hypercapnia (SpO2 ≤ 92% and \(P_{\text{ET} CO_2} > 50\) mmHg), leading to a total dependency of the mechanical ventilator. Continuous ventilator support may be instituted in a non-invasive form, through the relay of masks and oral apparatus or invasively via tracheostomy to facilitate ventilator assistance and bronchial hygiene\(^{(43,44)}\).

Benefits of VMNI:

- Ventilatory improvement and balanced blood gases
- Improvement of the quality of sleep
- Reverse of symptomatology

Increase of pulmonary volumes
- Minimizes respiratory muscle work
- Reduces the number of respiratory infections
- Reduces the number and time of hospitalizations
- Promotes longer and better quality of life\(^{(33,43,44)}\).

Contraindications of VMNI:

- Lowering of the conscious level, sleepiness, lethargy, agitation, confusion or patient refusal
- Hemodynamic instability with need of vasopressor medication, shock, complex arrhythmias
- Facial trauma and fracture of the cranial base
- Deficient cough or swallowing difficulty
- Abdominal distension, nausea and vomiting
- Bleeding in high digestive tract\(^{(43,44)}\).

Other techniques and exercises are used to supplement the respiratory support in neuromuscular diseases, including:

- Maximum Insufflatory Capacity: technique of pulmonary expansion usually applied on the respiratory treatment of neuromuscular diseases, aiming optimization of the pulmonary flows and volumes, improvement of atelectasis areas, cough and pulmonary complacence. Consists in the use of ambu in sequential pulmonary insufflation until reaching total pulmonary capacity. In general, one must exercise daily, with a frequency of 3 times a day. It is indicated for patients with reduced forced vital capacity (FVC) to less than 50 to 60% of the normal value\(^{(39)}\).
- Manually Assisted Cough: due to the impairment of the expiratory muscles, patients present inefficacious cough capacity, fatigue and recurrent pulmonary infections. To help eliminate pulmonary secretion, it is frequently used the maneuver of maximum insufflation, followed by thoracic and/or abdominal compression during the expiratory phase\(^{(39,40)}\).
- Equipment of cough mechanical assistance: portable machine known as In-Exsufflator (Cough-Assist - Respiration\(^{(5)}\)), which mechanically assists the cough through deep pulmonary insufflations, followed by a rapid exsufflation stage, increasing the flow peak and removing the secretion. Regular pressure levels vary between + 30/40 cm H\(_O\) and -30/40 cm H\(_O\) and attention must be drawn to the risk of pneumothorax\(^{(39,40)}\).

Contraindicated Therapies:

Considering the physiopathologic alterations involved in neuromuscular diseases, specific therapeutic measures are usually not indicated and its applications, when really necessary, demand cautious and clinical monitoring\(^{(39,40)}\):

- Oxygen-therapy: the isolated use of oxygen works on the carotid receptors reducing the respiratory muscles impulses, possibly leading to narcosis and death

Sleep Sci. 2013;6(4):159-174
• Respiratory enhancers of nonlinear or linear pressure (Respiron/Voldyne or Threshold): the not well indication of these equipments may lead to an excessive and unnecessary muscular overload, with an early respiratory fatigue installation.

Practice in Brazil

Brazilian Law (Portaria) no 370, of July 4th, 2008, has amplified the group of neuromuscular diseases with free access to treatment with mechanical non-invasive ventilation (VMNI-Bipap). Nowadays in Brazil, the Sector for the Treatment of Neuromuscular Diseases (TDN) of the AFIP/Institute of Sleep, is the reference center of the São Paulo Estate, destined to the following up and support of ventilatory treatment.

The team is formed by neurological, pediatric, pneumologist doctors and physiotherapists, responsible for the initial clinical evaluation, VMNI indication and ambulatory and home following up in the long term.

Routine TDN consultation:

- Patients without ventilator support: clinical consultations with doctor and physiotherapist are done with a monthly, tri-monthly, semestery or annually, according to the severity of the case and individual need. All consultations include: symptoms evaluation, measurements of vital signs and blood gases, pulmonary function tests, evaluation tests of respiratory and coughing muscular strength. The following up aims to an early detection of the need for VMNI and reduction of adverse reactions.
- Patients on VMNI: the ambulatory consultation usually takes place after the first month of VMNI initiation in order to evaluate the adaptation and adherence process, as well as the presence of possible adverse reactions. Later on, the consultations are undertaken at variable intervals varying from 1 to 3 months. Patients who reside in the city of São Paulo and nearby, also have monthly home visit of the physiotherapist. Patients from out of the state or out of reach of the center (country and maritime rim) are periodically followed up in our ambulatory location; and as frequently as necessary, there is a direct contact with the local team.

Indications of VMNI:

- Clinical criteria as the presence of signs and symptoms of hypoventilation and, at least, one of the following physiological criteria: CVF < 50% of predicted value, Pimax < 60cm H2O, nocturnal/diurnal hypoventilation or OSAS.

Among the physiotherapist’s functions, there are:

- Detailed clinical history
- Physical examination (weight, height/breadth, pulmonary auscultation, presence of muscle/skeleton deformities
- Signs and symptoms of hypoventilation
- Non-invasive measurements of blood gases
- Respiratory tests: spirometry (sitting and supine), measurement of maximum respiratory pressures (Pimax, Pemax, Sniff test), measurement of peak of expiratory flow and peak of cough flow

Examination and orientation of the respiratory exercises with ambu: maximum insufflation capacity and assisted coughing

Analysis and interpretation of the polysomnography and other clinical/laboratorial exams

Adaptation and orientation of VMNI:

- Adjust and regulation of the ventilator parameters (average flow volume 8 to 10 ml/Kg)
- Selection and adaptation of interfaces (facial, nasal, intranasal, total face)
- Reading and Adhesion Data Interpretation
- Reduction of adverse reactions: rhinitis, nasal congestion and dryness, aerophagia, facial lesion, nausea
- Installation of warm humidification when necessary
- General guidelines to patients, family members and caretakers

Routine clinical ambulatory reevaluations

Clinical and ventilator evaluations and monthly home support

Respiratory disorders of sleep and cerebrovascular diseases

Authors: Aline Marques Franco; Daniela Morales; Alan Luiz Eckeli; Octávio Marques Pontes-Neto

Definition:

Cerebrovascular diseases are vascular disorders that affect the central nervous system, causing temporary or permanent damage by ischemia or bleeding to a part of the brain or spinal cord due to any pathological process.

Among cerebrovascular diseases, the encephalic vascular accident (EVA) is the most frequent and may be defined as a clinical syndrome of vascular origin, characterized by the rapid onset of signs and symptoms characterize of focal encephalic involvement. There are two fundamental types of EVA: the ischemic, caused by the focal blood flow rapid decrease to a determined brain area in about 80% of the cases; and the hemorrhagic type, responsible for the remaining 20% of the cases and caused by the spontaneous rupture (nontraumatic) of a blood vessel, with bleeding to the interior of the brain (intra-cerebral hemorrhage), to the ventricular system (intra-ventricular hemorrhage) and/or sub-arachnoidal space (sub-arachnoidal hemorrhage).
The OSAS is the most common respiratory sleep disorder in patients with EVA. Due to increasing scientific interest in the study of this association, the relationship between these two disease groups is progressively more notorious.

Epidemiology:

Cerebrovascular diseases are the second major cause of mortality in the entire world, being responsible for 9.7% of all deaths in 2004 and probably will reach 12.1% of the world mortality till 2030[40].

In Brazil, cerebrovascular diseases are the main cause of death, overtaking coronary diseases[47].

Several epidemiological studies indicate that the sleep obstructive apnea is an independent risk factor for cardiovascular and cerebrovascular diseases. Some studies have observed sleep apnea in up to 62% of the patients during the first night after an ischemic EVA and associated it to an early neurological deterioration[48]. Besides, the excess of obstructive apneas during the acute phase was associated with the increased mortality in patients with ischemic EVA on the long term[49,50].

Yaggi et al. have published in 2005 a prospective and longitudinal study demonstrating that severe apneic patients showed a risk 3.3 times bigger of EVA or death compared with the non-apneic patients, independently of age, sex, race, obesity, smoking history, alcoholism, hypertension, diabetes, hyperlipidemia or atrial fibrillation[51].

Therefore, OSAS appears to be an independent risk factor for ischemic EVA. As far as the relationship between OSAS and EVA, there is a need for more studies to demonstrate that interaction.

Physiopathology:

The relationship between obstructive sleep apnea and EVA is probably a process involving several mechanisms.

The apnea episodes lead to an intermittent hypoxia, CO₂ retention, with alteration of the hemodynamic and autonomic responses during sleep. Besides, they generate an increase of sympathetic activity with consequent peripheral vasoconstriction and blood pressure elevation. This recurrent hypoxemic stress leads to the release of vasoactive peptides, trophic substances such as endothelin, which may be related to the genesis or to the worsening of chronic arterial hypertension. The hypoxemia leads to an increase of the systemic inflammatory responses raising levels of inflammatory adhesion molecules such as IL-6, TNF-α and C-reactive protein, and higher leukocyte activation. The hypoxemia and re-oxygenation episodes characteristic of OSAS are implicated in the generation of the oxidative stress mechanism and to a possible endothelial dysfunction. Additionally, it is believed that the catecholamine increase and sleep deprivation related to OSAS contribute to the development of insulin resistance and glucose intolerance, independently of obesity. OSAS has been associated with an increase of platelet activation, increase of fibrinogen levels and of other potential markers of a pre-thrombotic state. Moreover the sudden oscillations of the intra-thoracic pressures during obstructive apnea episodes have been associated with a ventricular cardiac dysfunction, autonomic and hemodynamic instability and increase of intra-cardiac shunts with possible paradoxical embolism. These mechanisms may predispose to the occurrence of EVA in OSAS patients[52].

It is believed that OSAS is more often the cause and not the effect of EVA due to some factors:

- apnea is essentially obstructive and not central;
- the frequency of OSAS is not different from that of TIA (transient ischemic attack) and cerebral stroke;
- the frequency of OSAS is not different from that of localized brain stroke of the stem or cerebral hemisphere;

Role of the Physiotherapist:

Scientific Evidences:

The use of positive pressure in airways is the technique that has been more studied in patients with EVA and is physiotherapist’s job the handling of the equipment, choosing and adjusting the masks, patient and caretaker’s orientation, besides other techniques that may help improve the patient’s adhesion to the treatment.

Although the treatment of obstructive apnea of sleep with positive pressure is well established, the technique is still not fully implemented for OSAS and EVA’s patients, even though the treatment seems to be secure and present benefits for this population.

Recent studies bring evidences that the treatment of sleep apnea may reduce the risk of cerebral stroke and may prevent the early neurological deterioration in the acute phase of cerebral ischemic lesion, at which moment when the zone of critical collateral flow (penumbra) might be affected by episodes of desaturation and hypo-flow caused by apneas.

In the study of Sandberg et al., patients with EVA and OSAS were treated with nasal CPAP during 4 weeks. The use of CPAP for a period longer than 4 nocturnal hours resulted in improvement of the depressive symptoms and a reduction of “delirium” during the rehabilitation phase[53].

Wessendorf et al. observed that the use of CPAP in patients with EVA and OSAS during the phase of rehabilitation, led to a subjective improvement of well-being and the normalization of nocturnal blood pressure within the first 10 days of treatment[54].

Martinez-Garcia et al., in a study with EVA and TIA, demonstrated that the patients selected to be treated with nasal CPAP showed significant reduction of the appearance of new vascular events (EVA and Acute Myocardial Infarction), when compared with the controls that did not follow the treatment, during a period of 18 months of treatment[55].

The main limitation for the treatment with CPAP equipment has been the adhesion to treatment, which can be stimulated by means of an intensive support and continuous education programs.
Palombini & Guilleminault[56] have shown that only 22% of treatment adhesion during 8 weeks of treatment, with 34% of lack of signature on the agreement consent by the patients or caretakers, after been shown to the CPAP equipment.

Some studies evaluating the use of CPAP in those patients have attributed the poor treatment adhesion to the severity of motor impairment, to spontaneous improvement of respiratory events, nocturnal disorientation, cognitive disorders, poor mask adjustment and absence of treatment belief.

Bassetti et al.[59] observed poor adhesion to CPAP by EVA and OSAS’s patients, after the patients release from the hospital, with only 30% of them using the equipment at home in a long term evaluation.

In 2011, Parra et al.[57] conducted the first controlled and randomized study with the objective of evaluate CPAP use during acute phase of EVA and OSAS; and the impact of the equipment use on these patients, followed up during two years. The study concluded that the early use of CPAP in patients victims of first ischemic episode and afflicted by mild or moderate OSAS, is associated to improvement of the neurological evaluating scales 1 month after the EVA on the CPAP group, when compared to the patients in the control group. The acceptance of nasal CPAP and treatment adhesion were favorable and the mortality rate was smaller in the patients of the CPAP group.

A recent study by Svatikova et al.[58] suggests the use of alternative therapies due to poor adhesion to CPAP. The study concludes that the positioning therapy to avoid the supine position, reduces the severity of the sleep apnea after an ischemic EVA.

Practical Considerations of Physiotherapeutic Role:
The use of PAP is of great importance in the management of patients with EVA or OSAS, however there exist some essential considerations:

- The patients generally have advanced age and possess some functional incapacitation due to the EVA. Considering that, they might have some difficulty in adaptation and use of the mask and equipment;
- Cognitive deficiencies and/or sensitive aphasia (or Wernicke’s) may difficult the understanding and respect for the importance of the treatment with PAP and, consequently, difficult the patient’s adhesion to it;
- A great portion of patients require active caretaker’s participation in order to achieve a good treatment adhesion. Being so, it is essential that the physiotherapist develop a continuous education program not only for the patients, but as well as along with their caretakers;
- During the acute and sub-acute phase of EVA, the occurrence of central apneas may limit the use of PAP. A possible solution would be the use of equipments that were able to detect central apneas. However, up to now, the use of PAP during the acute phase of EVA still needs more scientific evidences;
- The presence of facial paralysis may contribute to air leakages through the mouth, causing dryness of the nasal and pharyngeal mucosa, worsening the quality of sleep and the treatment adhesion to PAP;
- One way to evaluate de improvement of PAP’s adherence is a patient’s referral of decreased diurnal sleepiness. In patients with EVA this evaluation may be limited. As a result, it is necessary to validate the improvement with specific scales of subjective evaluation of OSAS in patients with EVA.

The diagnostic and treatment of OSAS in patients with EVA may positively influence the functional performance, mortality and prevention of a new cerebrovascular event. Besides, according to literature, the treatment with PAP is safe for this type of patients. Thus, it is recommended that the clinical protocols of rehabilitation on EVA include the early investigation of OSAS and its treatment in these patients. The use of PAP during the early phase of EVA is under investigation and more robust scientific evidences for its indication must become available very soon.

Periodic limb movements and restless leg syndrome

Author: Susana Cristina Lerosa Telles

Definition and diagnostic:
The Periodic Limb Movements (PLM) disorder is characterized by repeated and stereotyped movements during sleep not derived from any other primary sleep disturbance. The movements comprise hallux extension, combined with ankle partial flexing and, sometimes of the hip as well. Similar movements may also occur on arms. The diagnostic of PLM is based on complete basal polysomnography, in addition to the clinical data[60].

The Restless Leg Syndrome (RLS) is a sensory-motor disorder frequently associated with PLM. It is characterized by an urge to move the legs in the evening or night. It worsens during rest and there is a partial or complete relief by moving the legs or walking. The relief is immediate though temporary. It may manifest in just one or both legs. It may be idiopathic or secondary to other conditions such as pregnancy, kidney disease, iron-deprived anemia and peripheral neuropathy[69].

The diagnostic of RLS is obtained only if the patient fulfill all the necessary criteria[60]:

- **I. Need for move the legs, usually associated with dysesthesia; patients may use the terms like itching, tingling, pain, discomfort, irritation, anxiety and others.**
- **II. Beginning or increase with rest: mainly at bed time, that characterizes the syndrome as a sleep disorder.**
- **III. Relief by movement: is immediate and dependent of continuous movement. It may need stretching or walking. In some cases, massage or rubbing of the member are resources that can alleviate the sensation.**
IV. Circadian pattern: it worsens at evening or beginning of the night, improves during late at night. It compromises the patient’s sleep until the improvement of the symptoms.

V. The occurrence of the abovementioned characteristics is not related to other medical or behavioral disorders (such as: myalgia, venous stasis, edema of the legs, arthritis, leg cramps, positional discomfort, tapping the foot on the floor by habit).

Other criteria that may support diagnosis:
I. Family history
II. Response to dopaminergic therapy
III. Presence of PLM

Associated clinical characteristics:
I. Natural evolution of the disease according to patterns: it is a chronic disease, which if started at young age tends to be insidious, and may present long periods of remission; or if starting late in life, may be sudden.
II. Sleep disorder: reduces the sleeping time, but the sleep per se is not altered.
III. Physical exam is normal: usually, the etiology is idiopathic. For this reason, one must be alert to conditions that may be related to a secondary RLS.

In children, the diagnostic follow other criteria:
I. The child must fulfill all the essential adult criteria and
II. The child describes with its own words the leg discomfort

OR
I. The child must fulfill all the essential adult criteria and
II. Two of the three support criteria are present:
 a. Sleep disorder for the age
 b. Family history
 c. Polysomnographic diagnosis of PLM

Epidemiology:
The prevalence of PLM in the population is 3.9% \(^{(60)}\). There are several genes related to the disorder transmission \(^{(62)}\). Such genes mark the final proof of its real pathology, with clinical characteristics that correspond to a genetic transmission. The RLS has clinical diagnosis, therefore, the prevalence and incidence may vary according with the study criteria. If only the symptoms are considered, the prevalence varies from 9.4% to 15%. If the minimum diagnostic criteria from the International Restless Leg Syndrome Study Group \(^{(60)}\), are considered, the prevalence varies from 3.9% to 14.3%. When factors like severity and frequency are taken in consideration, the prevalence varies from 2.2% to 7.9%. When performing the differential diagnostic procedure, the prevalence varies from 1.9% to 4.6%. The prevalence is higher in women and increases with age \(^{(63)}\).

Physiopathology:
The physiopathology of these disorders has not yet been established. Both are related to other disorders, which are the sources of some physiopathology theories such as:

- a. Possible participation of generators of central pattern \(^{(64)}\) related to the occurrence of these disorders in spinal cord injury patients.
- b. Iron deficiency \(^{(62)}\) demonstrated in clinical studies and in patients that respond to the iron reposition treatment.
- c. Dopaminergic deregulation on the superior central nervous system \(^{(62)}\) demonstrated in image studies and in patients that respond to anti-dopaminergic agents.

Role of the physiotherapist:
On PLM:
Scientific Evidences:
The PLM is a chronic disorder incurable until nowadays, but it is controllable by drug and nondrug therapies.

There are evidences that physical exercise decreases the symptoms of PLM, however, there is still no consensus about it \(^{(64)}\). No type of exercise has been defined as effective; however, the majority of protocols include treadmill bicycles and other exercises that vary according to the protocol. The physiotherapist who works in spinal cord injury rehabilitation must be alert because the patients can manifest PLM \(^{(64)}\). There are evidences of improvement of the symptoms in these patients in protocols involving adapted treadmill bicycles \(^{(60)}\).

Practice in Brazil:
PLM has already been approached by programs including aerobic exercises (treadmill bicycles or treadmill) varying in intensity, duration, number of sessions and follow up with good results \(^{(60)}\). Lower limbs strengthening exercises have also been applied allied to aerobics, demonstrating good results \(^{(60)}\). The chronic character of these disorders reflects what happens in practice: the results are maintained only when the patient is adherent to the program. In these cases, the physiotherapist must:

I. Perform a physiotherapeutic consultation, specific anamnesis for sleep disturbances with the use of Epworth’s Sleepiness Scale, the Pittsburg Questionnaire on Quality of Sleep or evaluate the patient according to the International Functional Classification.
II. Guide, favor and readapt the client/patient to the program of aerobic exercises.
III. Determine the performance conditions for the aerobic program and, if necessary, recondition the client/patient through specific kinesiotherapy adequate for each case in order to prepare the patient for the aerobic program, establishing compensatory pauses and reassess the strategies for physiotherapeutic intervention.
In RLS
Scientific Evidences:
RLS is also a chronic and incurable disorder, although it shows some periods of spontaneous remission. Drugs and nondrug approaches are used in the control of RLS.

In terms of RLS intervention, the role of the physiotherapist almost does not show scientific evidences. In a single revision of a nondrug treatment, the transcutaneous electrical neural stimulation (TENS) was used showing positive results(66). In the clinical practice of idiopathic RLS, presenting strong circadian mode of nocturnal appearance of the symptoms, the TENS would work if the patient applied it at home, after orientation from the physiotherapist. Another attempt of a nondrug treatment was undertaken to evaluate the efficacy of monochromatic infrared light on the decrease of the RLS’s symptoms. In a randomized study, International Restless Legs Syndrome Study Group(66) evaluations were performed before, during and after applications. Thirty four patients were submitted to 12 applications on the legs for 30 minutes. The results showed a continuous decrease in the symptoms of the treatment group when compared with the control group (p < 0.001). The improvement was kept during 4 weeks after the treatment, when compared to the basal results, however pointing a small trend to increase the symptoms after five weeks. The system used in this therapy was the Anodyne® with a wavelength of 890 nm, whose effect, theoretically, occurs due to the release of nitric acid and, consequently, a chain of biochemical reactions on the blood vessels which leads to a better local circulation(67). The same group compared two infrared wavelengths and frequencies. In this randomized experiment, 25 individuals were submitted to the same scheme of sessions of the previous study and were evaluated in the same fashion. The differences between the Anodyne® system and the one denominated Heat Light®, are the use of an infrared light of 650 nm in Heat Light®, and the frequencies of 292 Hz for the Anodyne® and 4698 Hz for the Heat Light®. Both equipments improved significantly the symptoms of RLS, with no significant difference between the two equipments(67).

The physiotherapist, who especially in amputee’s rehabilitation, must be alert as to the possibility of RLS of the legs, each patient comes to the clinic already presenting strong circadian mode of nocturnal appearance of the symptoms, the TENS would work if the patient applied it at home, after orientation from the physiotherapist. Another attempt of a nondrug treatment was undertaken to evaluate the efficacy of monochromatic infrared light on the decrease of the RLS’s symptoms. In a randomized study, International Restless Legs Syndrome Study Group(66) evaluations were performed before, during and after applications. Thirty four patients were submitted to 12 applications on the legs for 30 minutes. The results showed a continuous decrease in the symptoms of the treatment group when compared with the control group (p < 0.001). The improvement was kept during 4 weeks after the treatment, when compared to the basal results, however pointing a small trend to increase the symptoms after five weeks. The system used in this therapy was the Anodyne® with a wavelength of 890 nm, whose effect, theoretically, occurs due to the release of nitric acid and, consequently, a chain of biochemical reactions on the blood vessels which leads to a better local circulation(67). The same group compared two infrared wavelengths and frequencies. In this randomized experiment, 25 individuals were submitted to the same scheme of sessions of the previous study and were evaluated in the same fashion. The differences between the Anodyne® system and the one denominated Heat Light®, are the use of an infrared light of 650 nm in Heat Light®, and the frequencies of 292 Hz for the Anodyne® and 4698 Hz for the Heat Light®. Both equipments improved significantly the symptoms of RLS, with no significant difference between the two equipments(67).

The physiotherapist dealing with a RLS patient may follow the orientations of International RLS Study Group(68). In summary, it is recommended the nondrug therapy: physical exercises, changing the periods of inactivity to daytime, follow a good sleep hygiene program, since the sleep deprivation increases the symptoms considerably, and avoid a series of substances such as nicotine, caffeine, alcohol and drugs as antidepressants, antihistaminics, anti-nausea and antipsychotics.

The physiotherapist dealing with patients affected by peripheral neuropathy, may detect associated RLS. This professional should then approach both disorders based on specific physiotherapeutic protocols. In this case, it is important to educate and inform the patient that he/she has two distinct conditions, therefore, with two different treatment approaches concerning their differences in terms of sensitivity and motor manifestations.

More researches are still necessary to validate or not the efficacy of TENS or infrared light on the relief of RLS. The physiotherapeutic approach of PLM, whichever adopted, must bear in mind that it is a daily and chronic discomfort that can be controlled; therefore, it must be conducted aiming the long term duration that could be accomplished independently by the patient.

Fibromyalgia and physiotherapy
Authors: Amélia Pasqual Marques; Ana Assumpção

Definition
Fibromyalgia (FM) is a painful and non-articular syndrome of undetermined nature that is more frequent among women, being characterized by general and chronic musculoskeletal pain, specific painful sites at palpation - tender points - frequently determined, without significant laboratory alterations suggestive of the disease(69). FM generates great incapacitation, physically, as well as emotionally, such as depression and anxiety(70-72) leading to a great impact in the quality of life(73).

Epidemiology and prevalence
FM has been described as one of the most frequent rheumatologic disorder in the world population and especially in Spain(74), Bangladesh(75), Brazil(76-78) and México(79). In terms of medical health assistance, it may represent 7% of all health complaints(80). The prevalence reported in literature ranges from 0.66% and 10.5%(81) and presence in 2% of the adult population, increasing to 3.4% in women(82) and, among the middle age population around 5%(77,79). Among the Brazilian population, it varies from 2.5% in the adult population, 4.4% in the middle age population and 5.5% among the older population(74,76,77).

Physiopathology
Researches indicate FM as a disorder of the processing of the sensory stimuli by the central nervous system(83,84) resulting in hypersensitivity, especially in pain modality, but also, hearing, olfactory, etc. The more consistent findings refer to pain-related
neurotransmitters, inhibitory as well as excitatory ones. The bio-
genic amines, serotonin and norepinephrine (pain inhibitors) are
reduced in patients with FM, meanwhile the P substance (an
excitatory pain neurotransmitter) appears to be in greater con-
centration in the cerebrospinal fluid\(^\text{85,86}\). These alterations could
justify also the other symptoms of the disease such as sleep dis-
orders, which have not yet been clarified. There are researchers
who consider that the poor quality of sleep causes the related
pain in FM and there are others who believe on the opposite
idea, relating it to the Restless Leg Syndrome and Temporoman-
dibular Disorder\(^\text{97,98}\).

Another alteration related to FM symptomatology is
the hypothalimus-hypophysis-adrenal axis, as highlighted by
increased basal levels of the Adrenocorticotropic and follicle
stimulating hormones, associated with the decrease of
the insulin-like growth factor I (IGF-1), growth hormone (GH),
estrogen, urinary cortisol, among others. These findings justify
the association of FM and symptoms of chronic stress as well
as the interference upon the quality of sleep and anxiety\(^\text{89}\).
On other hand, stressful events are also being described as
predisposing and inciting FM factors. Among the agents which
increase the incidence of FM are traumas (as whiplash injury),
infections (as hepatitis C and B, HIV, Lyme’s disease), emotional
distress, catastrophic events (war), surgery, auto-immune
diseases and others (such as rheumatoid arthritis, systemic lupus
erythematousus, Sjögren’s Syndrome)\(^\text{99,90}\).

Physiotherapy

According to the American College of Sport Medicine\(^\text{91}\), aerob-
ic exercises must be performed between three and five times a
week, with an intensity of 55% to 65% at 90% of the maximum
heart rate, or between 40% and 50% at 90% of the consump-
tion of reserve oxygen (\(\text{VO}_2\)) lasting 20 to 60 minutes. These
exercises appear to aid in the improvement of the pain\(^\text{92}\), well-
being\(^\text{93,94}\), fitness\(^\text{95}\), sensitivity of the tender points\(^\text{95,96}\) and other
symptoms\(^\text{97,98}\). The aerobic exercise programs for the treatment
of FM patients have been conducted in several ways, including
a walking\(^\text{97,98}\), bicycling\(^\text{98}\), and group games\(^\text{99}\), with a duration
of eight\(^\text{94}\) to 24 weeks\(^\text{97}\). Combination of aerobic exercises,
stretching and muscular strengthening\(^\text{100,101}\) are also included
on the evidences of the positive effects of guided exercises.
Sometimes these programs are conducted in a warm swimming
pool\(^\text{102,103}\) or in association to other therapeutic measures such
as educational programs\(^\text{104}\), relaxing\(^\text{100,105}\) and biofeedback\(^\text{106}\).

Stretching exercises aim to increase the range of motion,
holding a position of medium discomfort for about 30 seconds and
with a frequency of two to three times a week\(^\text{107}\), allowing
the muscle to recover its functional strength, improving the
movement range of motion and reestablishing degrees of
freedom, better improvement of postural alignment and the
integrity of its physiological functions\(^\text{107,108}\).

Despite very little scientific evidence, recent studies
suggest positive effects of the flexibility exercises. Valencia et
al.\(^\text{109}\) compared the effect of kinesiotherapy with general mobility
and stretching exercises through the global stretching technique
of Mezières. The authors observed positive results over pain,
flexibility and overall FM symptoms in both groups after the
treatment, which, however, are lost during the following up.

Considerations

Up to now, fibromyalgia has an unknown cause and manifests
itself through pain and compromising the quality of life. It has
a huge prevalence since it permeates among a very productive
age range and generates great social-economic impact. Physio-
therapy has an important role in its treatment and control of the
symptoms. Therapeutic exercises are being postulated as one of
the main tools in the management of FM with solid scientific
evidences, including the sleep disturbances patients also present.

Physiotherapist role on the sleep bruxism

Authors: Alida Kellerman Borba; Susana Cristina Lerosa Telles

Definition

Sleep Bruxism is defined as a motor activity of grinding or
clenching of teeth during sleep\(^\text{110}\). But, for the physiotherapist,
it is important to be studied as kinesiologic and biomechani-
cal phenomena, within the temporomandibular joint disorder
(TMD), since the evaluation, patient’s symptoms and physi-
otherapeutic approach will be similar, despite the etiological dif-
fferences between these two pathologies.

TMD is defined as a group of pathologies that affect the
masticatory muscles, the temporomandibular joint (TMJ) and related
structures. The most usual symptoms are: pain, audible TMJ click,
limited mandibular range of motion, muscle and articular tenderness,
besides other symptoms related to the head and cervical spine\(^\text{111}\).

Epidemiology

Sleep bruxism appears to be a persistent chronic disease with
evolution from its start at early age or during teen ages to its
adult phase. It has a prevalence of 14% to 20% of children un-
der 11 years old, thus its incidence is strongly connected to age,
appearing around childhood after teeth eruption or at the begin-
ing of teen ages, and reducing incidence after 40 years of age.
The prevalence of sleep bruxism is about 13% between 18 and
29 years of age, decreasing to 3% among individuals with more
than 60 years of age or more. Longitudinal studies revealed that
35% to 90% of children with sleep bruxism carry on with those
symptoms in adult age\(^\text{112}\).

Only 5% to 20% of patients with sleep bruxism are
aware of the episodes of grinding their teeth\(^\text{112}\), probably due
to the episodes of facial and TMJ pain.

Etiology and physiopathology

Sleep bruxism has several classifications: primary and idiopathic,
secondary or iatrogenic. The etiology is still not well established
in primary or idiopathic cases, however, there are several theo-
ries: problems related to dental occlusion, personality style, abil-
ity to support daily pressures and neurochemical maintenance
of sleep\(^\text{110}\). It might be secondary to neurological, movement,
or sleep disorders; or related to the use of narcotics or drugs such as amphetamines, anti-dopaminergics, antipsychotics, anti-depressants and medications for cardiopathies109.

As overall concept, it is important to bear in mind that the morphological integrity of masticatory system depends upon the balance between physiological tolerance (represented by the emotional stress absorption capacity) and the structural tolerance113. In this point of view the sleep bruxism, regardless of its cause, has to be studied within the context of TMD, a multi-factorial pathology. Among its main causes are the para-functional habits, which may be described as tightening of the teeth, biting nails and chewing gum among others, and, occlusion, structural, sleep and emotional alterations and traumas. Para-functional habits are generated by the central nervous system stimuli of isometric contraction, sustained by the correspondent muscle group involved, which leads to the overload of the articulations where these muscles are attached, decreasing the inter-articular space and leading to the intensification of the degenerative state. The para-functional habits most commonly observed in TMD patients are tightening of the teeth, bruxism and bad posture114.

Besides the muscular disorders related to TMD, there are other internal disarrays of the TMJ which are defined as mechanical failures related to the inadequate positioning of the articular disk115. The most common articular manifestation is the dislocation of the articular disk, with or without reduction, characterized by the loss of the normal condilo-distal ratio. This situation may also happen due to degenerative diseases, inflammatory disorders, modifications in the disk morphology and defects in the articular surfaces116.

Role of the Physiotherapist on the treatment of sleep bruxism

Up to now, sleep bruxism has no available cure109. In its treatment, therapeutic exercises are placed as part of behavioral measures and may be associated to other therapeutic measures according to each case110.

Again, for the physiotherapist, sleep bruxism is integrated within TMD. The objective of TMD treatment is to control the pain, recover the masticatory system normal function, re-educate the patient and minimize the adverse loads that might perpetuate the problem116.

All studies that verify the influence of physiotherapy on TMDs, describe that it is inserted among those supportive therapies for the treatment of this disorder, aiming to abolish the signs and symptoms, keeping or recovering the functional activity within the least amount of time116.

In the study by Smékal et al., there was a significant reduction of the pain after the employment of physiotherapeutic techniques of relaxation and mobilization of the TMD’s region, cervical column and its fascias. After the treatment protocol, 8.7% of the patients were totally free of the symptoms and 60.9% of them were very happy with the employed method of treatment117.

The physiotherapeutic exercises have positive effects over the pain and its sequelae on the chronic inactivity of the musculo-skeletal system. The improvement of the symptoms and function is significantly better in the treated groups than in the control groups (with no treatment), observing no differences between the various forms of physiotherapeutic procedures114.

The results of a systematic review described by McNeely et al.113, demonstrate that it is possible to use active and passive oral exercises to improve the posture and reduce the TMD’s associated symptoms. There were no evidences to support the use of electro-physical modalities to reduce the pain; however, the results demonstrated improvement on mouth opening with the applied exercises.

Another systematic review by Medlicott et al.118 analyzed the studies which evaluated the efficacy of some physiotherapeutic interventions in TMD, concluding that the active exercises, the manual joint mobilization, the postural training combined with other interventions, the laser therapy, the feedback programs (biofeedback), relaxing and proprioceptive reeducation may be more efficient than the placebo treatment or than the use of myorelaxant plates; and the combination of active exercises, manual therapy, postural correction and relaxing techniques, may be efficacious.

In general, the patient with sleep bruxism will search for the medical treatment due to the orofacial pain, pain in the TMJ or in the neck119. Therefore, the physiotherapy in the early stages of the dysfunction is the best treatment to prevent the installation of chronic pain. The treatment should not be limited to the ATM region, but should also take into consideration the relationship with other parts of the motor system and with the chain muscular interactions between the head and neck117. The option for the physiotherapeutic treatment may contribute to a better patient evolution, but its approach is still timid and requires more researches that can definitively prove its efficacy.

Acknowledgements

To the Brazilian Sleep Association, that make possible the union of physiotherapists, as well as to our professors, advisor and colleagues from other health professionals who guided us.

To Dr. Gustavo Antonio Moreira, Dr. Luís Fernando Grossklauss, Dr. Mârcia Pradela Hallinan, Dr. Ricardo Tera Akamine, Dr. Sérgio Nacif. To Fabiana Cristina Ferreira and to the supporting staff from TDN. To the staff from DAR to the Medicina Física Department from Hospital do Servidor Estadual de São Paulo.

REFERENCES

Sleep Sci. 2013;6(4):159-174
65. Krueger BR. Restless legs syndrome and periodic movements of sleep.
59. American Academy of Sleep Medicine. International classification of
50. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
48. Pontes-Neto OM, Fernandes RM, Sander HH, da Silva LA, Mariano
47. Pontes-Neto OM, Fernandes RM, Sander HH, da Silva LA, Mariano
46. Pontes-Neto OM, Fernandes RM, Sander HH, da Silva LA, Mariano
44. Pontes-Neto OM, Fernandes RM, Sander HH, da Silva LA, Mariano
43. Sandberg O, Franklin KA, Bucht G, Eriksson S, Gustafson Y. Nasal
42. Pontes-Neto OM, Fernandes RM, Sander HH, da Silva LA, Mariano
41. Sandberg O, Franklin KA, Bucht G, Eriksson S, Gustafson Y. Nasal
40. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
38. Pontes-Neto OM, Fernandes RM, Sander HH, da Silva LA, Mariano
37. Pontes-Neto OM, Fernandes RM, Sander HH, da Silva LA, Mariano
36. Pontes-Neto OM, Fernandes RM, Sander HH, da Silva LA, Mariano
35. Pontes-Neto OM, Fernandes RM, Sander HH, da Silva LA, Mariano
34. Pontes-Neto OM, Fernandes RM, Sander HH, da Silva LA, Mariano
33. Pontes-Neto OM, Fernandes RM, Sander HH, da Silva LA, Mariano
32. Sandberg O, Franklin KA, Bucht G, Eriksson S, Gustafson Y. Nasal
31. Sandberg O, Franklin KA, Bucht G, Eriksson S, Gustafson Y. Nasal
30. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
29. Sandberg O, Franklin KA, Bucht G, Eriksson S, Gustafson Y. Nasal
27. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
26. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
25. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
24. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
23. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
22. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
21. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
20. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
19. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
18. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
17. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
16. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
15. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
14. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
13. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
12. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
11. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
10. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
9. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
8. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
7. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
6. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
5. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
4. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
3. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
2. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and
1. Bassetti CL, Milanova M, Gugger M. Sleep-disordered breathing and